Zang YF papers

Subscribe to Zang YF papers feed Zang YF papers
NCBI: db=pubmed; Term=zang yf
Updated: 1 hour 9 min ago

Reduced default mode network functional connectivity in patients with recurrent major depressive disorder.

Fri, 03/27/2020 - 00:36
Related Articles

Reduced default mode network functional connectivity in patients with recurrent major depressive disorder.

Proc Natl Acad Sci U S A. 2019 04 30;116(18):9078-9083

Authors: Yan CG, Chen X, Li L, Castellanos FX, Bai TJ, Bo QJ, Cao J, Chen GM, Chen NX, Chen W, Cheng C, Cheng YQ, Cui XL, Duan J, Fang YR, Gong QY, Guo WB, Hou ZH, Hu L, Kuang L, Li F, Li KM, Li T, Liu YS, Liu ZN, Long YC, Luo QH, Meng HQ, Peng DH, Qiu HT, Qiu J, Shen YD, Shi YS, Wang CY, Wang F, Wang K, Wang L, Wang X, Wang Y, Wu XP, Wu XR, Xie CM, Xie GR, Xie HY, Xie P, Xu XF, Yang H, Yang J, Yao JS, Yao SQ, Yin YY, Yuan YG, Zhang AX, Zhang H, Zhang KR, Zhang L, Zhang ZJ, Zhou RB, Zhou YT, Zhu JJ, Zou CJ, Si TM, Zuo XN, Zhao JP, Zang YF

Abstract
Major depressive disorder (MDD) is common and disabling, but its neuropathophysiology remains unclear. Most studies of functional brain networks in MDD have had limited statistical power and data analysis approaches have varied widely. The REST-meta-MDD Project of resting-state fMRI (R-fMRI) addresses these issues. Twenty-five research groups in China established the REST-meta-MDD Consortium by contributing R-fMRI data from 1,300 patients with MDD and 1,128 normal controls (NCs). Data were preprocessed locally with a standardized protocol before aggregated group analyses. We focused on functional connectivity (FC) within the default mode network (DMN), frequently reported to be increased in MDD. Instead, we found decreased DMN FC when we compared 848 patients with MDD to 794 NCs from 17 sites after data exclusion. We found FC reduction only in recurrent MDD, not in first-episode drug-naïve MDD. Decreased DMN FC was associated with medication usage but not with MDD duration. DMN FC was also positively related to symptom severity but only in recurrent MDD. Exploratory analyses also revealed alterations in FC of visual, sensory-motor, and dorsal attention networks in MDD. We confirmed the key role of DMN in MDD but found reduced rather than increased FC within the DMN. Future studies should test whether decreased DMN FC mediates response to treatment. All R-fMRI indices of data contributed by the REST-meta-MDD consortium are being shared publicly via the R-fMRI Maps Project.

PMID: 30979801 [PubMed - indexed for MEDLINE]

Linked anatomical and functional brain alterations in children with attention-deficit/hyperactivity disorder.

Sun, 03/22/2020 - 00:31
Related Articles

Linked anatomical and functional brain alterations in children with attention-deficit/hyperactivity disorder.

Neuroimage Clin. 2019;23:101851

Authors: Wu ZM, Llera A, Hoogman M, Cao QJ, Zwiers MP, Bralten J, An L, Sun L, Yang L, Yang BR, Zang YF, Franke B, Beckmann CF, Mennes M, Wang YF

Abstract
OBJECTIVES: Neuroimaging studies have independently demonstrated brain anatomical and functional impairments in participants with ADHD. The aim of the current study was to explore the relationship between structural and functional brain alterations in ADHD through an integrated analysis of multimodal neuroimaging data.
METHODS: We performed a multimodal analysis to integrate resting-state functional magnetic resonance imaging (MRI), structural MRI, and diffusion-weighted imaging data in a large, single-site sample of children with and without diagnosis for ADHD. The inferred subject contributions were fed into regression models to investigate the relationships between diagnosis, symptom severity, gender, and age.
RESULTS: Compared with controls, children with ADHD diagnosis showed altered white matter microstructure in widespread white matter fiber tracts as well as greater gray matter volume (GMV) in bilateral frontal regions, smaller GMV in posterior regions, and altered functional connectivity (FC) in default mode and fronto-parietal networks. Age-related growth of GMV of bilateral occipital lobe, FC in frontal regions as well as age-related decline of GMV in medial regions seen in controls appeared reversed in children with ADHD. In the whole group, higher symptom severity was related to smaller GMV in widespread regions in bilateral frontal, parietal, and temporal lobes, as well as greater GMV in intracalcarine and temporal cortices.
CONCLUSIONS: Through a multimodal analysis approach we show that structural and functional alterations in brain regions known to be altered in subjects with ADHD from unimodal studies are linked across modalities. The brain alterations were related to clinical features of ADHD, including disorder status, age, and symptom severity.

PMID: 31077980 [PubMed - indexed for MEDLINE]

Pregenual or subgenual anterior cingulate cortex as potential effective region for brain stimulation of depression.

Wed, 03/11/2020 - 00:15
Related Articles

Pregenual or subgenual anterior cingulate cortex as potential effective region for brain stimulation of depression.

Brain Behav. 2020 Mar 08;:e01591

Authors: Jing Y, Zhao N, Deng XP, Feng ZJ, Huang GF, Meng M, Zang YF, Wang J

Abstract
BACKGROUND: The dorsolateral prefrontal cortex (DLPFC) is the standard stimulation target for the repetitive transcranial magnetic stimulation (rTMS) treatment of major depression disorder (MDD). A retrospective study by Fox and colleagues found that a more negative resting-state functional magnetic resonance imaging (RS-fMRI) functional connectivity (FC) between left DLPFC and the subgenual anterior cingulate cortex (sgACC) in a large group of healthy participants is associated with a better curative effects of rTMS in MDD, suggesting that the sgACC may be an effective region. However, a recent meta-analysis on RS-fMRI studies found that the pregenual ACC (pgACC), rather than the sgACC, of MDD patients showed increased local activity.
METHODS: We used the stimulation coordinates in the left DLPFC analyzed by Fox et al. to perform RS-fMRI FC between the stimulation targets obtained from previous rTMS MDD studies and the potential effective regions (sgACC and pgACC, respectively) on the RS-fMRI data from 88 heathy participants.
RESULTS: (a) Both the pgACC and the sgACC were negatively connected to the left DLPFC; (b) both FCs of sgACC-DLPFC and pgACC-DLPFC were more negative in responders than in nonresponders; and (c) the associations between DLPFC-sgACC functional connectivity and clinical efficacy were clustered around the midline sgACC.
CONCLUSIONS: Both the pgACC and the sgACC may be potential effective regions for rTMS on the left DLPFC for treatment of MDD. However, individualized ACC-DLPFC FC-based rTMS on depression should be performed in the future to test the pgACC or the sgACC as effective regions.

PMID: 32147973 [PubMed - as supplied by publisher]

Altered Cerebello-Motor Network in Familial Cortical Myoclonic Tremor With Epilepsy Type 1.

Fri, 03/06/2020 - 00:02
Related Articles

Altered Cerebello-Motor Network in Familial Cortical Myoclonic Tremor With Epilepsy Type 1.

Mov Disord. 2020 Mar 04;:

Authors: Wang B, Wang J, Cen Z, Wei W, Xie F, Chen Y, Sun H, Hu Y, Yang D, Lou Y, Chen X, Ouyang Z, Chen S, Wang H, Wang L, Wang S, Qiu X, Ding Y, Yin H, Wu S, Zhang B, Zang YF, Luo W

Abstract
BACKGROUND: Intronic pentanucleotide insertion in the sterile alpha motif domain-containing 12 gene was recently identified as the genetic cause of familial cortical myoclonic tremor with epilepsy type 1.
OBJECTIVES: We thereafter conducted a multimodal MRI research to further understand familial cortical myoclonic tremor with epilepsy type 1.
METHODS: We enrolled 31 patients carrying heterozygous pathogenic intronic pentanucleotide insertion in the sterile alpha motif domain-containing 12 gene and 31 age- and sex-matched healthy controls. We compared multimodal MRI metrics, including voxel-based morphometry, fractional anisotropy of diffuse tensor imaging, frequency-dependent percent amplitude fluctuation, and seed-based functional connectivity of resting-state functional MRI.
RESULTS: Significant decreased gray matter volume was found in the cerebellum. Percent amplitude fluctuation analysis showed significant interaction effect of "Frequency by Group" in three regions, including the vermis VIII, left cerebellar lobule VIII, and left precentral gyrus. Specifically, the lowest-frequency band exhibited significant increased percent amplitude fluctuation in patients in the two cerebellar subregions, whereas the highest-frequency band exhibited decreased percent amplitude fluctuation in the precentral gyrus in patients. Discriminative analysis by support vector machine showed a mean accuracy of 82% (P = 1.0-5 ). An increased functional connectivity between vermis VIII and the left precentral gyrus was found in patients with familial cortical myoclonic tremor with epilepsy type 1. A positive correlation between the percent amplitude fluctuation in the left cerebellar lobule VIII and duration of cortical tremor was also found.
CONCLUSION: The cerebellum showed both structural and functional damages. The distinct change of spontaneous brain activity, that is, increased ultra-low-frequency amplitude in the cerebellum and the decreased higher-frequency amplitude in the motor cortex, might be a pathophysiological feature of familial cortical myoclonic tremor with epilepsy type 1. © 2020 International Parkinson and Movement Disorder Society.

PMID: 32129927 [PubMed - as supplied by publisher]

Associations of brain entropy (BEN) to cerebral blood flow and fractional amplitude of low-frequency fluctuations in the resting brain.

Sat, 02/01/2020 - 23:13
Related Articles

Associations of brain entropy (BEN) to cerebral blood flow and fractional amplitude of low-frequency fluctuations in the resting brain.

Brain Imaging Behav. 2019 Oct;13(5):1486-1495

Authors: Song D, Chang D, Zhang J, Ge Q, Zang YF, Wang Z

Abstract
Entropy is a fundamental trait of human brain. Using fMRI-based brain entropy (BEN) mapping, interesting findings have been increasingly revealed in normal brain and neuropsychiatric disorders. As BEN is still relatively new, an often-raised question is how much new information can this measure tell about the brain compared to other more established brain activity measures. The study aimed to address that question by examining the relationship between BEN and cerebral blood flow (CBF) and the fractional amplitude of low-frequency fluctuations (fALFF), two widely used resting state brain state measures. fMRI data acquired from a large cohort of normal subjects were used to calculate the three metrics; inter-modality associations were assessed at each voxel through the Pearson correlation analysis. A moderate to high positive BEN-CBF and BEN-fALFF correlations were found in orbito-frontal cortex (OFC) and posterior inferior temporal cortex (ITC); Strong negative BEN-fALFF correlations were found in visual cortex (VC), anterior ITC, striatum, motor network, precuneus, and lateral parietal cortex. Positive CBF-fALFF correlations were found in medial OFC (MOFC), medial prefrontal cortex (MPFC), left angular gyrus, and left precuneus. Significant gender effects were observed for all three metrics and their correlations. Our data clearly demonstrated that BEN provides unique information that cannot be revealed by CBF and fALFF.

PMID: 30209786 [PubMed - indexed for MEDLINE]

Percent amplitude of fluctuation: A simple measure for resting-state fMRI signal at single voxel level.

Thu, 01/09/2020 - 19:35

Percent amplitude of fluctuation: A simple measure for resting-state fMRI signal at single voxel level.

PLoS One. 2020;15(1):e0227021

Authors: Jia XZ, Sun JW, Ji GJ, Liao W, Lv YT, Wang J, Wang Z, Zhang H, Liu DQ, Zang YF

Abstract
The amplitude of low-frequency fluctuation (ALFF) measures resting-state functional magnetic resonance imaging (RS-fMRI) signal of each voxel. However, the unit of blood oxygenation level-dependent (BOLD) signal is arbitrary and hence ALFF is sensitive to the scale of raw signal. A well-accepted standardization procedure is to divide each voxel's ALFF by the global mean ALFF, named mALFF. Although fractional ALFF (fALFF), a ratio of the ALFF to the total amplitude within the full frequency band, offers possible solution of the standardization, it actually mixes with the fluctuation power within the full frequency band and thus cannot reveal the true amplitude characteristics of a given frequency band. The current study borrowed the percent signal change in task fMRI studies and proposed percent amplitude of fluctuation (PerAF) for RS-fMRI. We firstly applied PerAF and mPerAF (i.e., divided by global mean PerAF) to eyes open (EO) vs. eyes closed (EC) RS-fMRI data. PerAF and mPerAF yielded prominently difference between EO and EC, being well consistent with previous studies. We secondly performed test-retest reliability analysis and found that (PerAF ≈ mPerAF ≈ mALFF) > (fALFF ≈ mfALFF). Head motion regression (Friston-24) increased the reliability of PerAF, but decreased all other metrics (e.g. mPerAF, mALFF, fALFF, and mfALFF). The above results suggest that mPerAF is a valid, more reliable, more straightforward, and hence a promising metric for voxel-level RS-fMRI studies. Future study could use both PerAF and mPerAF metrics. For prompting future application of PerAF, we implemented PerAF in a new version of REST package named RESTplus.

PMID: 31914167 [PubMed - in process]

Resting-State Functional Connectivity of the Thalamus in Complete Spinal Cord Injury.

Tue, 01/07/2020 - 19:32

Resting-State Functional Connectivity of the Thalamus in Complete Spinal Cord Injury.

Neurorehabil Neural Repair. 2020 Jan 06;:1545968319893299

Authors: Karunakaran KD, Yuan R, He J, Zhao J, Cui JL, Zang YF, Zhang Z, Alvarez TL, Biswal BB

Abstract
Background. Neuroimaging studies of spinal cord injury (SCI) have mostly examined the functional organization of the cortex, with only limited focus on the subcortical substrates of the injury. However, thalamus is an important modulator and sensory relay that requires investigation at a subnuclei level to gain insight into the neuroplasticity following SCI. Objective. To use resting-state functional magnetic resonance imaging to examine the functional connectivity (FC) of thalamic subnuclei in complete SCI patients. Methods. A seed-based connectivity analysis was applied for 3 thalamic subnuclei: pulvinar, mediodorsal, and ventrolateral nucleus in each hemisphere. A nonparametric 2-sample t test with permutations was applied for each of the 6 thalamic seeds to compute FC differences between 22 healthy controls and 19 complete SCI patients with paraplegia. Results. Connectivity analysis showed a decrease in the FC of the bilateral mediodorsal nucleus with right superior temporal gyrus and anterior cingulate cortex in the SCI group. Similarly, the left ventrolateral nucleus exhibited decreased FC with left superior temporal gyrus in SCI group. In contrast, left pulvinar nucleus demonstrated an increase in FC with left inferior frontal gyrus and left inferior parietal lobule in SCI group. Our findings also indicate a negative relationship between postinjury durations and thalamic FC to regions of sensorimotor and visual cortices, where longer postinjury durations (~12 months) is associated with higher negative connectivity between these regions. Conclusion. This study provides evidence for reorganization in the thalamocortical connections known to be involved in multisensory integration and affective processing, with possible implications in the generation of sensory abnormalities after SCI.

PMID: 31904298 [PubMed - as supplied by publisher]