不好意思,网速终于快一点了,我还是在这里提问下吧。谢谢管理员的解答。
今天研究了下alphasim,发现有些地方不是太懂。以下是我用全脑mask跑的alphasim。
Mask filename = BrainMask_05_61x73x61
Voxels in mask = 70831
Gaussian filter width (FWHM, in mm) = 8.000
Cluster connection radius: rmm = 5.00
Individual voxel threshold probability = 0.001
Number of Monte Carlo simulations = 1000
Output filename = AlphaSimtext0.0018
Cl Size Frequency Cum Prop p/Voxel Max Freq Alpha
1 7099 0.375073 0.000885 0 1.000000
2 3831 0.577482 0.000785 0 1.000000
3 2259 0.696835 0.000677 9 1.000000
4 1558 0.779151 0.000581 6 0.991000
5 1043 0.834258 0.000493 26 0.985000
6 758 0.874307 0.000420 52 0.959000
7 552 0.903471 0.000356 68 0.907000
8 425 0.925926 0.000301 88 0.839000
9 322 0.942939 0.000253 103 0.751000
10 228 0.954985 0.000212 86 0.648000
11 173 0.964125 0.000180 75 0.562000
12 144 0.971734 0.000153 78 0.487000
13 110 0.977545 0.000129 59 0.409000
14 98 0.982723 0.000108 66 0.350000
15 73 0.986580 0.000089 62 0.284000
16 43 0.988852 0.000074 32 0.222000
17 33 0.990595 0.000064 30 0.190000
18 35 0.992445 0.000056 26 0.160000
19 24 0.993713 0.000047 19 0.134000
20 19 0.994717 0.000041 18 0.115000
21 20 0.995773 0.000035 20 0.097000
22 15 0.996566 0.000029 13 0.077000
23 7 0.996936 0.000025 7 0.064000
24 15 0.997728 0.000022 15 0.057000
25 10 0.998256 0.000017 9 0.042000
26 8 0.998679 0.000014 8 0.033000
27 5 0.998943 0.000011 5 0.025000
28 4 0.999155 0.000009 4 0.020000
29 2 0.999260 0.000007 2 0.016000
30 1 0.999313 0.000007 1 0.014000
31 3 0.999472 0.000006 3 0.013000
32 4 0.999683 0.000005 4 0.010000
33 1 0.999736 0.000003 1 0.006000
34 2 0.999841 0.000003 2 0.005000
35 0 0.999841 0.000002 0 0.003000
36 0 0.999841 0.000002 0 0.003000
37 2 0.999947 0.000002 2 0.003000
38 0 0.999947 0.000001 0 0.001000
39 0 0.999947 0.000001 0 0.001000
40 1 1.000000 0.000001 1 0.001000
1、 视频里说,如果我们要想校正后0.05,就看alpha值,第一个小于0.05所对应的Cl Size值就是需要的cluster size,在这个表中应该是25个voxels,因为校正之前的p值是0.001.那么我的问题是如果我希望校正后是0.01,是不是要看alpha值第一个小于0.01(应该是可以等于0.01吧)所对应的cluster size,那就是32个voxels。好,p=0.001(uncorrected)+ 25 voxels达到的效果是0.05(corrected);p=0.001(uncorrected)+ 32 voxels达到的效果是0.01(corrected),我这样说对不对呢?
2、 最近看了一篇文章,里面统计部分说到,Group-level analyses of the fALFF maps were conducted by one-sample t test (to detect the activity in the tryptophan-depletion and sham-depletion conditions, respectively) and paired t test (to detect the difference between both conditions) using SPM8. In these analysis, statistical thresholds were set at a voxel-wise p < 0.005 (uncorrected) and cluster level p < 0.05 (corrected). 我想我做alphasim校正是不是也可以这么说呢?如果是上面那段话就应该是:1)p < 0.001 (uncorrected) and cluster level p < 0.05 (corrected) 2)p < 0.001 (uncorrected) and cluster level p < 0.01 (corrected). 就是没有说cluster size具体是多少。
3、 在严博和臧老师文章Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load中统计部分提到:The within-condition statistical threshold was set at |t|.4.8975 (P<0.0001) and cluster size>135 mm3, which corresponds to a corrected P<0.0001. This correction was confined within the whole-brain mask (size: 1448118 mm3) and was determined by Monte Carlo simulations [45] that were performed by the program AlphaSim in AFNI (http://afni.nih.gov/afni/docpdf/AlphaSim.pdf). 我想问下这个brainmask是什么brainmask,其实size: 1448118 mm3就是53634个voxels,我看了下无论是53,63,46的全脑mask还是61,73,61的全脑mask都不是53634个voxels(这个跑alsim的时候会自己报出来有多少个体素,上面那个是Voxels in mask = 70831个)。还有,校正之前是P<0.0001+cluster size135 mm3(5个体素)就达到了校正后P<0.0001的效果。我跑了很多次这个表格,就没有找到alpha=0.0001的值,如最上面的表中,最小的alpha也才是0.001。
4、 如果我校正之前的p值取0.05,是不是加上一个很大的cluster size的话,也能达到校正后0.0001的效果呢?(alpha值就是对应的校正后的p值嘛,对吗?)比如下面这个表,校正之前是0.005,加上一个77的cluster size,是不是就达到了校正后0.001的效果呢?
Mask filename = BrainMask_05_61x73x61
Voxels in mask = 70831
Gaussian filter width (FWHM, in mm) = 8.000
Cluster connection radius: rmm = 5.00
Individual voxel threshold probability = 0.005
Number of Monte Carlo simulations = 1000
Output filename = AlphaSimtext
Cl Size Frequency Cum Prop p/Voxel Max Freq Alpha
1 18369 0.289773 0.004429 0 1.000000
2 10783 0.459876 0.004169 0 1.000000
3 6929 0.569182 0.003865 0 1.000000
4 5234 0.651749 0.003571 0 1.000000
5 3863 0.712688 0.003276 0 1.000000
6 3103 0.761638 0.003003 0 1.000000
7 2489 0.800902 0.002740 0 1.000000
8 2080 0.833715 0.002494 0 1.000000
9 1637 0.859538 0.002259 0 1.000000
10 1360 0.880993 0.002051 0 1.000000
11 1155 0.899213 0.001859 1 1.000000
12 890 0.913253 0.001680 3 0.999000
13 746 0.925021 0.001529 5 0.996000
14 613 0.934691 0.001392 8 0.991000
15 581 0.943856 0.001271 7 0.983000
16 478 0.951397 0.001148 18 0.976000
17 422 0.958054 0.001040 30 0.958000
18 371 0.963907 0.000939 29 0.928000
19 311 0.968813 0.000844 34 0.899000
20 240 0.972599 0.000761 39 0.865000
21 202 0.975785 0.000693 36 0.826000
22 225 0.979335 0.000633 62 0.790000
23 159 0.981843 0.000564 45 0.728000
24 174 0.984588 0.000512 53 0.683000
25 115 0.986402 0.000453 54 0.630000
26 120 0.988295 0.000412 60 0.576000
27 80 0.989557 0.000368 47 0.516000
28 67 0.990614 0.000338 31 0.469000
29 67 0.991671 0.000311 32 0.438000
30 56 0.992554 0.000284 34 0.406000
31 60 0.993501 0.000260 40 0.372000
32 44 0.994195 0.000234 25 0.332000
33 30 0.994668 0.000214 20 0.307000
34 43 0.995346 0.000200 34 0.287000
35 23 0.995709 0.000179 15 0.253000
36 27 0.996135 0.000168 21 0.238000
37 25 0.996529 0.000154 21 0.217000
38 23 0.996892 0.000141 19 0.196000
39 27 0.997318 0.000129 22 0.177000
40 24 0.997697 0.000114 22 0.155000
41 16 0.997949 0.000100 13 0.133000
42 18 0.998233 0.000091 17 0.120000
43 12 0.998422 0.000081 9 0.103000
44 10 0.998580 0.000073 10 0.094000
45 9 0.998722 0.000067 8 0.084000
46 14 0.998943 0.000061 12 0.076000
47 7 0.999053 0.000052 6 0.064000
48 10 0.999211 0.000048 9 0.058000
49 6 0.999306 0.000041 6 0.049000
50 4 0.999369 0.000037 4 0.043000
51 2 0.999401 0.000034 2 0.039000
52 3 0.999448 0.000032 3 0.037000
53 1 0.999464 0.000030 1 0.034000
54 4 0.999527 0.000029 4 0.033000
55 4 0.999590 0.000026 4 0.029000
56 2 0.999621 0.000023 2 0.025000
57 2 0.999653 0.000022 2 0.023000
58 3 0.999700 0.000020 2 0.021000
59 3 0.999748 0.000018 3 0.019000
60 2 0.999779 0.000015 2 0.016000
61 0 0.999779 0.000013 0 0.014000
62 2 0.999811 0.000013 2 0.014000
63 1 0.999826 0.000012 1 0.012000
64 3 0.999874 0.000011 3 0.011000
65 1 0.999890 0.000008 1 0.008000
66 0 0.999890 0.000007 0 0.007000
67 1 0.999905 0.000007 1 0.007000
68 1 0.999921 0.000006 1 0.006000
69 0 0.999921 0.000005 0 0.005000
70 1 0.999937 0.000005 1 0.005000
71 1 0.999953 0.000004 1 0.004000
72 0 0.999953 0.000003 0 0.003000
73 1 0.999968 0.000003 1 0.003000
74 0 0.999968 0.000002 0 0.002000
75 0 0.999968 0.000002 0 0.002000
76 1 0.999984 0.000002 1 0.002000
77 0 0.999984 0.000001 0 0.001000
78 0 0.999984 0.000001 0 0.001000
79 0 0.999984 0.000001 0 0.001000
80 0 0.999984 0.000001 0 0.001000
81 0 0.999984 0.000001 0 0.001000
82 0 0.999984 0.000001 0 0.001000
83 0 0.999984 0.000001 0 0.001000
84 0 0.999984 0.000001 0 0.001000
85 1 1.000000 0.000001 1 0.001000
5、 是不是alphasim校正是一种比较弱的校正呢?很多期刊我感觉都不太认alphasim校正,大部分好的期刊都是FEW校正的。比如我在AJP,AGP,或者PNAS上从没见过alphasim校正。我们组写的一些文章用alphasim校正的话,审稿人一般都会让我们用其他校正。我感觉alphasim校正一定能出结果,比如校正之前p<0.001+cluster size 25达到了校正后0.05的效果,如果这个没有存活下来的体素。我们就可以用校正之前p<0.005+cluster size 49,同样达到校正后0.05的效果,虽然效果都是p<0.05(corrected),但是第二个的强度远小于第一个校正。如果这个还不出结果,实在不行我就可以用校正之前p<0.05+cluster size 405,这样也达到了p<0.05(corrected)。但是这个效果也是小于前两个校正的效果的。但是他也是p<0.05(corrected)。neuroimage的一篇文章中就是用的alphasim校正(P<0.05,cluster size >3591mm3,我感觉用这个是因为退而求其次,可能用校正前p<0.01等没有什么结果)
6.如果我算alphasim的时候用一个灰质mask,能不能用AAL模板,把里面的数字全变成1呢?因为AAL是分割的灰质区域,或者是用spm中的概率模板,如果用概率模板的话,阈值取多少呢?
7、最近看了一篇ALFF的文章,又没有看出用的什么校正。To characterize the alteration of ALFF in treatment-naive FES, voxel-based analysis of the ALFF maps between the control and patient groups was performed with two-sample t-tests using SPM2.
Significant differences were set at the threshold of a corrected cluster
level of P<0.05 and voxel-wise t>3.12 (corresponding to P<0.001).
如何能实现这种方法呢?
不好意思,问题有些多,可能理解不够深入,请多解释下,辛苦了。
Submitted by YAN Chao-Gan on Sat, 10/15/2011 - 02:58 Permalink
Re
1. 我认为你的理解正确。
2. 是的。但这篇文章写得不好,没有报告用的什么校正方法,需要让人来猜。猜测他们是用SPM的FWE校正的。但个人建议你自己写文章的时候,写清楚,用的什么软件,什么校正方法,如果是AlphaSim,那么报告校正的团块大小。把信息报告清楚,不要让审稿人和读者猜测,个人认为这样最好。
3. 做这项工作的时候,还没有REST的default mask。这项工作用的基于ch2 bet制作的mask,所以你在现在的REST里面,是找不到这个Mask的。
4. 0.001,是的。不过,0.0001表中未见,不知道要加多大的cluster size。
5. 你说的没错,AlphaSim是会宽松一些,FWE会严一些。当然,更严的是Bonferroni correction,一般你也不会用。到底哪种方法好,大家并没有一致结论。在一些探索性研究中,可能能够接受更宽松一点的校正,在一些验证性研究中,大家可能更期待严格一点的校正。
6. 个人觉得灰质模板可能好一些。30%?
7. 这篇文章只能猜测,所以也只能猜测实现。SPM FWE?
你最近对校正研究得比较多,建议你有精力和时间的时候,研究一下3dClustSim,看看和AlphaSim的异同,然后把经验向大家汇报一下,可以么?谢谢!
Submitted by liufeng on Sat, 10/15/2011 - 08:31 Permalink
好的,谢谢严师兄,我会抽时间好好研究下3dClustSim
好的,谢谢严师兄,我会抽时间好好研究下3dClustSim的。如果这些基本的弄的不明不白,写出来的文章就会缺乏严谨性、科学性。
Submitted by leeona on Tue, 04/08/2014 - 11:11 Permalink
Re: Re
请问严老师,张老师 现在这个问题有进展吗,特别是问题5, 即校正前设置不同的“Individual voxel threshold probability” ,选择对应的cluster size,均可以达到校正后p<0.05的效果,但存活的区域是有差别的。
Submitted by ZHANG_RESTadmin on Wed, 04/09/2014 - 13:57 Permalink
Re: Re
我没有看到过具体比较alpha sim voxel 水平阈值和cluster 水平阈值的文章。
alphasim确实会可能被审稿人问到,一般,校正前p < 0.05确实有点低。但是目前很多rest文章用alphasim的,说明还是有它的道理。
不过,我觉得相比于校正的问题,在另外一批样本或者另外一次扫描中得到相似的结论(即reproducibility和reliability或者consistency)这个问题跟重要。
对于alphasim,Karl Friston有这么一段比较经典的话,供参考:
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=SPM;72167f9a.1111