April 2014

Dynamic brain connectome analysis toolbox

Dynamic brain connectome (DynamicBC) analysis toolbox is a Matlab toolbox to calculate Dynamic Functional Connectivity (d-FC) and Dynamic Effective Connectivity (d-EC). Sliding window analysis (Bivariate Pearson correlation and Granger causality) and time varying parameter regression method (Flexible Least Squares) are two dynamic analysis strategies for time-variant connectivity analysis in the DynamicBC. Granger causality density/strength (GCD/GCS) and functional connectivity density/strength (FCD/FCS) analysis would be performed in this toolbox. Add DynamicBC's directory to MATLAB's path and enter "DynamicBC" in the command window of MATLAB to enjoy it.

The latest release is DynamicBC2.2_20181112

Manual could also be downloaded here

New features of DynamicBC 2.0 release 20180311:
New features of DynamicBC2.2 release 20181112:
--Added a visualization module for connectogram.
--Added a demo for visualization a connectogram.
--Added new feature for cluster number estimation.
--Fixed a bug for clustering the ALFF maps.

 

New features of DynamicBC 2.0 release 20180311:
   --Fixed minor bugs in the Clustering module.

New features of DynamicBC 2.0 release 20171228:
1. Changed the toolbox cover.
2. Added the new module for dynamic intrinsic brain activity (dynamic ALFF).  

 

New features of DynamicBC 1.2 release 20160415

Fixed the step bugs when selecting window size.

 

New features of DynamicBC 1.1 release 20140710:
1. Added the new utilties including the ‘Clustering’ and 'Spectrum' for dynamic FC/EC time series.
2. Added the new output of variance of dynamic FC/EC time series.  
 

New features of DynamicBC 1.0 release 20140429
This release fixed some minor bugs in dynamic FCD.

关于功能连接结果的解释

 各位老师好:
       我使用静息态的数据做功能连接,利用Voxel-based的方法研究M1区的功能连接,种子点选择左右两侧的M1区,出来的全脑功能连接图取了阈值之后总是会出现两侧的枕叶区域,我们的数据都是闭眼扫静息态的,我查的做运动功能连接的文献里面基本上都没提到枕叶区域,不知道是他们的结果就没枕叶还是他们没报道。在我矫正很严格的情况下枕叶还是存在,不知该如何解释这种情况?是不是比如我只关心和运动相关的脑区,但是出来一些明显和运动无关的脑区可以不用报出来或解释,请指导~~

ICA结果后处理

 张老师你好:
我有两个问题想咨询下

  • 1、 我现在有两组数据,正常对照组和病人组,我使用MICA已经处理完数据,并且已经从正常对照组的成分中找出对应的8个RSN,要比较两组被试某个RSN的差异,我想问下,病人的8个RSN所对应的成分是否就和正常对照组的成分一样(在处理数据时两组设置的成分数一样的),还是两组被试各找各的RSN所对应的成分?