关于SPM中ANOVA算法
请问三组被试通常先做ANOVA,如何在SPM里算post hoc two sample T test?
- Read more about 关于SPM中ANOVA算法
- 3 comments
- Log in or register to post comments
- 11016 reads
请问三组被试通常先做ANOVA,如何在SPM里算post hoc two sample T test?
A NIDA sponsored international conference will be held in Hangzhou in April 2015. The focus will be drug addiction and HIV. Please visit the following webpage for details. The deadline for submitting an abstract is Dec 1 2014.
http://www.caldar.org/html2/2015-international-conference-global-health.html
Thanks for your attention!
Ze
这次会议邀请了NIDA所长、著名成瘾研究科学家Nora Volkow, 艾滋病鸡尾酒疗法发明人何大一,研究吸烟有关的基因方面著名的学者Ming Li 教授,在成瘾治疗方面卓有成著的
Hi all,
各位老师好:
请教:1. 用dpabi做REHO的统计学分析,在统计学计算时没有加BRAIN mask,看图做Alphasim时加Brain mask的得到的结果,与在统计学计算时加BRAIN mask,看图做Alphasim时加Brain mask的得到的结果完全不同,哪个是对的呢?
2. 同一组被试前、中、后,3个时间段比较是否应该用ANCOVA(repeated measure)分析,之后再做两两分析时一定是在ANCOVA有意义的区域才可以,对吗?
Hello DPARSFA researchers,
I'm working with two different subject populations - one which has 31 rfMRI slices and 240 time points and one which has 36 slices and 300 time points. There are a couple of patients who have different numbers of slices as well (e.g., 32 and 33). So far, I've run:
老师好!请问下,matlab报的这个错误,该怎么解决。万分感谢
各位老师好!
Cluster 7 Number of voxels: 287 Peak MNI coordinate: -3 -24 51 Peak MNI coordinate region: // Left Cerebrum // Frontal Lobe // Medial Frontal Gyrus // Gray Matter // brodmann area 6 // Paracentral_Lobule_L (aal) Peak intensity: 4.0519 # voxels structure 287
--TOTAL # VOXELS-- 241 Frontal Lobe
155 Right Cerebrum
136 Gray Matter
127Paracentral Lobule
124 Left Cerebrum
107 Medial Frontal Gyrus
92 White Matter
81 brodmann area 6
64 Cingulum_Mid_R (aal)
57 Supp_Motor_Area_L (aal)
52 Supp_Motor_Area_R (aal)
37 Paracentral_Lobule_L (aal)
36 Cingulum_Mid_L (aal) 35 Paracentral_Lobule_R (aal)
34 brodmann area 31
33 Limbic Lobe
28 Cingulate Gyrus
17 Sub-Gyral
11 brodmann area 5 10 brodmann area 24 8 Inter-Hemispheric 5 Parietal Lobe 4 Precuneus_R (aal)
Dear Experts
Hi
I have identified DMN using ICA algorithm and I would like to examin effective connectivity using GCA.
As far as I know unlike functional connectivity,effective connectivity is presented as a set of nodes (regions) and edges. How should I specify nodes and edges?How could I obtain path coefficients?
Many thanks in advance.