Most recent paper

Subscribe to Most recent paper feed Most recent paper
NCBI: db=pubmed; Term="resting"[All Fields] AND "fMRI"[All Fields]
Updated: 1 hour 46 min ago

Individualized Connectome-Targeted Transcranial Magnetic Stimulation for Neuropsychiatric Sequelae of Repetitive Traumatic Brain Injury in a Retired NFL Player.

Fri, 04/05/2019 - 20:45
Related Articles

Individualized Connectome-Targeted Transcranial Magnetic Stimulation for Neuropsychiatric Sequelae of Repetitive Traumatic Brain Injury in a Retired NFL Player.

J Neuropsychiatry Clin Neurosci. 2019 Apr 03;:appineuropsych18100230

Authors: Siddiqi SH, Trapp NT, Shahim P, Hacker CD, Laumann TO, Kandala S, Carter AR, Brody DL

Abstract
OBJECTIVE:: The recent advent of individualized resting-state network mapping (RSNM) has revealed substantial interindividual variability in anatomical localization of brain networks identified by using resting-state functional MRI (rsfMRI). RSNM enables personalized targeting of focal neuromodulation techniques such as repetitive transcranial magnetic stimulation (rTMS). rTMS is believed to exert antidepressant efficacy by modulating connectivity between the stimulation site, the default mode network (DMN), and the subgenual anterior cingulate cortex (sgACC). Personalized rTMS may be particularly useful after repetitive traumatic brain injury (TBI), which is associated with neurodegenerative tauopathy in medial temporal limbic structures. These degenerative changes are believed to be related to treatment-resistant neurobehavioral disturbances observed in many retired athletes.
METHODS:: The authors describe a case in which RSNM was successfully used to target rTMS to treat these neuropsychiatric disturbances in a retired NFL defensive lineman whose symptoms were not responsive to conventional treatments. RSNM was used to identify left-right dorsolateral prefrontal rTMS targets with maximal difference between dorsal attention network and DMN correlations. These targets were spatially distinct from those identified by prior methods. Twenty sessions of left-sided excitatory and right-sided inhibitory rTMS were administered at these targets.
RESULTS:: Treatment led to improvement in Montgomery-Åsberg Depression Rating Scale (72%), cognitive testing, and headache scales scores. Compared with healthy individuals and subjects with TBI-associated depression, baseline rsfMRI revealed substantially elevated DMN connectivity with the medial temporal lobe (MTL). Serial rsfMRI scans revealed gradual improvement in MTL-DMN connectivity and stimulation site connectivity with sgACC.
CONCLUSIONS:: These results highlight the possibility of individualized neuromodulation and biomarker-based monitoring for neuropsychiatric sequelae of repetitive TBI.

PMID: 30945588 [PubMed - as supplied by publisher]

A 204-subject multimodal neuroimaging dataset to study language processing.

Fri, 04/05/2019 - 20:45
Related Articles

A 204-subject multimodal neuroimaging dataset to study language processing.

Sci Data. 2019 Apr 03;6(1):17

Authors: Schoffelen JM, Oostenveld R, Lam NHL, Uddén J, Hultén A, Hagoort P

Abstract
This dataset, colloquially known as the Mother Of Unification Studies (MOUS) dataset, contains multimodal neuroimaging data that has been acquired from 204 healthy human subjects. The neuroimaging protocol consisted of magnetic resonance imaging (MRI) to derive information at high spatial resolution about brain anatomy and structural connections, and functional data during task, and at rest. In addition, magnetoencephalography (MEG) was used to obtain high temporal resolution electrophysiological measurements during task, and at rest. All subjects performed a language task, during which they processed linguistic utterances that either consisted of normal or scrambled sentences. Half of the subjects were reading the stimuli, the other half listened to the stimuli. The resting state measurements consisted of 5 minutes eyes-open for the MEG and 7 minutes eyes-closed for fMRI. The neuroimaging data, as well as the information about the experimental events are shared according to the Brain Imaging Data Structure (BIDS) format. This unprecedented neuroimaging language data collection allows for the investigation of various aspects of the neurobiological correlates of language.

PMID: 30944338 [PubMed - in process]

Brain Functional Networks in Type 2 Diabetes Mellitus Patients: A Resting-State Functional MRI Study.

Thu, 04/04/2019 - 20:44
Related Articles

Brain Functional Networks in Type 2 Diabetes Mellitus Patients: A Resting-State Functional MRI Study.

Front Neurosci. 2019;13:239

Authors: Xu J, Chen F, Liu T, Wang T, Zhang J, Yuan H, Wang M

Abstract
Background: Previous diabetes mellitus studies of cognitive impairments in the early stages have focused on changes in brain structure and function, and more recently the focus has shifted to the relationships between encephalic regions and diversification of network topology. However, studies examining network topology in diabetic brain function are still limited.
Methods: The study included 102 subjects; 55 type 2 diabetes mellitus (T2DM) patients plus 47 healthy controls. All subjects were examined by resting-state functional magnetic resonance imaging (rs-fMRI) scan. According to Automated Anatomical Labeling, the brain was divided into 90 anatomical regions, and every region corresponds to a brain network analysis node. The whole brain functional network was constructed by thresholding the correlation matrices of the 90 brain regions, and the topological properties of the network were computed based on graph theory. Then, the topological properties of the network were compared between different groups by using a non-parametric test. Finally, the associations between differences in topological properties and the clinical indicators were analyzed.
Results: The brain functional networks of both T2DM patients and healthy controls were found to possess small-world characteristics, i.e., normalized clustering coefficient (γ) > 1, and normalized characteristic path length (λ) close to 1. No significant differences were found in the small-world characteristics (σ). Second, the T2DM patient group displayed significant differences in node properties in certain brain regions. Correlative analytic results showed that the node degree of the right inferior temporal gyrus (ITG) and the node efficiencies of the right ITG and superior temporal gyrus of T2DM patients were positively correlated with body mass index.
Conclusion: The brain network of T2DM patients has the same small-world characteristics as normal people, but the normalized clustering coefficient is higher and the normalized characteristic path length is lower than that of the normal control group, indicating that the brain function network of the T2DM patients has changed. The changes of node properties were mostly concentrated in frontal lobe, temporal lobe and posterior cingulate gyrus. The abnormal changes in these indices in T2DM patients might be explained as a compensatory behavior to reduce cognitive impairments, which is achieved by mobilizing additional neural resources, such as the excessive activation of the network and the efficient networking of multiple brain regions.

PMID: 30941007 [PubMed]

Interhemispheric functional connectivity in the zebra finch brain, absent the corpus callosum in normal ontogeny.

Thu, 04/04/2019 - 20:44
Related Articles

Interhemispheric functional connectivity in the zebra finch brain, absent the corpus callosum in normal ontogeny.

Neuroimage. 2019 Mar 30;:

Authors: Layden EA, Schertz KE, London SE, Berman MG

Abstract
Bilaterally symmetric intrinsic brain activity (homotopic functional connectivity; FC) is a fundamental feature of the mammalian brain's functional architecture. In mammals, homotopic FC is primarily mediated by the corpus callosum (CC), a large interhemispheric white matter tract thought to balance the bilateral coordination and hemispheric specialization critical for many complex brain functions, including human language. The CC first emerged with the Eutherian (placental) mammals ∼160 MYA and is not found among other vertebrates. Despite this, other vertebrates also exhibit complex brain functions requiring hemispheric specialization and coordination. For example, the zebra finch (Taeniopygia guttata) songbird learns to sing from tutors much as humans acquire speech and must balance hemispheric specialization and coordination to successfully learn and produce song. We therefore tested whether the zebra finch also exhibits homotopic FC, despite lacking the CC. Resting-state fMRI analyses demonstrated widespread homotopic FC throughout the zebra finch brain across development, including within a network required for learned song that lacks direct interhemispheric structural connectivity. The presence of homotopic FC in a non-Eutherian suggests that ancestral pathways, potentially including indirect connectivity via the anterior commissure, are sufficient for maintaining a homotopic functional architecture, an insight with broad implications for understanding interhemispheric coordination across phylogeny.

PMID: 30940612 [PubMed - as supplied by publisher]

The motor engram as a dynamic change of the cortical network during early sequence learning: an fMRI study.

Thu, 04/04/2019 - 20:44
Related Articles

The motor engram as a dynamic change of the cortical network during early sequence learning: an fMRI study.

Neurosci Res. 2019 Mar 30;:

Authors: Hamano YH, Sugawara SK, Yoshimoto T, Sadato N

Abstract
Neural substrates of motor engrams in the human brain are hard to identify because their dormant states are difficult to discriminate. We utilized eigenvector centrality (EC) to measure the network information that accumulates as an engram during learning. To discriminate engrams formed by emphasis on speed or accuracy, we conducted functional MRI on 58 normal volunteers as they performed a sequential finger-tapping task with the non-dominant left hand. Participants alternated between performing a tapping sequence as quickly as possible (maximum mode) or at a constant speed of 2 Hz, paced by a sequence-specifying visual cue (constant mode). We depicted the formation of the motor engram by characterizing the dormant state as the increase in EC of the resting epoch throughout the training course, and the ecphory, or activated state, as the increment in EC during the task epoch relative to the alternated resting epoch. We found that a network covering the left anterior intraparietal sulcus and inferior parietal lobule represented the engram for the speed of execution, whereas bilateral premotor cortex and right primary motor cortex represented the sequential order of movements. This constitutes the first demonstration of learning-mode specific motor engrams formed by only 30 min of training.

PMID: 30940459 [PubMed - as supplied by publisher]

High-level Integrative Networks: A Resting-state fMRI Investigation of Reading and Spelling.

Wed, 04/03/2019 - 20:43
Related Articles

High-level Integrative Networks: A Resting-state fMRI Investigation of Reading and Spelling.

J Cogn Neurosci. 2019 Apr 02;:1-17

Authors: Ellenblum G, Purcell JJ, Song X, Rapp B

Abstract
Orthographic processing skills (reading and spelling) are evolutionarily recent and mastered late in development, providing an opportunity to investigate how the properties of the neural networks supporting skills of this type compare to those supporting evolutionarily older, well-established "reference" networks. Although there has been extensive research using task-based fMRI to study the neural substrates of reading, there has been very little using resting-state fMRI to examine the properties of orthographic networks. In this investigation using resting-state fMRI, we compare the within-network and across-network coherence properties of reading and spelling networks directly to these properties of reference networks, and we also compare the network properties of the key node of the orthographic networks-the visual word form area-to those of the other nodes of the orthographic and reference networks. Consistent with previous results, we find that orthographic processing networks do not exhibit certain basic network coherence properties displayed by other networks. However, we identify novel distinctive properties of the orthographic processing networks and establish that the visual word form area has unusually high levels of connectivity with a broad range of brain areas. These characteristics form the basis of our proposal that orthographic networks represent a class of "high-level integrative networks" with distinctive properties that allow them to recruit and integrate multiple, lower level processes.

PMID: 30938593 [PubMed - as supplied by publisher]

Dysfunctional white-matter networks in medicated and unmedicated benign epilepsy with centrotemporal spikes.

Wed, 04/03/2019 - 20:43
Related Articles

Dysfunctional white-matter networks in medicated and unmedicated benign epilepsy with centrotemporal spikes.

Hum Brain Mapp. 2019 Apr 01;:

Authors: Jiang Y, Song L, Li X, Zhang Y, Chen Y, Jiang S, Hou C, Yao D, Wang X, Luo C

Abstract
Benign epilepsy with centrotemporal spikes (BECT) is the most common childhood idiopathic focal epilepsy syndrome, which characterized with white-matter abnormalities in the rolandic cortex. Although diffusion tensor imaging research could characterize white-matter structural architecture, it cannot detect neural activity or white-matter functions. Recent studies demonstrated the functional organization of white-matter by using functional magnetic resonance imaging (fMRI), suggesting that it is feasible to investigate white-matter dysfunctions in BECT. Resting-state fMRI data were collected from 24 new-onset drug-naive (unmedicated [NMED]), 21 medicated (MED) BECT patients, and 27 healthy controls (HC). Several white-matter functional networks were obtained using a clustering analysis on voxel-by-voxel correlation profiles. Subsequently, conventional functional connectivity (FC) was calculated in four frequency sub-bands (Slow-5:0.01-0.027, Slow-4:0.027-0.073, Slow-3:0.073-0.198, and Slow-2:0.198-0.25 Hz). We also employed a functional covariance connectivity (FCC) to estimate the covariant relationship between two white-matter networks based on their correlations with multiple gray-matter regions. Compared with HC, the NMED showed increased FC and/or FCC in rolandic network (RN) and precentral/postcentral network, and decreased FC and/or FCC in dorsal frontal network, while these alterations were not observed in the MED group. Moreover, the changes exhibited frequency-specific properties. Specifically, only two alterations were shared in at least two frequency bands. Most of these alterations were observed in the frequency bands of Slow-3 and Slow-4. This study provided further support on the existence of white-matter functional networks which exhibited frequency-specific properties, and extended abnormalities of rolandic area from the perspective of white-matter dysfunction in BECT.

PMID: 30937973 [PubMed - as supplied by publisher]

Increased Functional Connectivity of the Angular Gyrus During Imagined Music Performance.

Wed, 04/03/2019 - 20:43
Related Articles

Increased Functional Connectivity of the Angular Gyrus During Imagined Music Performance.

Front Hum Neurosci. 2019;13:92

Authors: Tanaka S, Kirino E

Abstract
The angular gyrus (AG) is a hub of several networks that are involved in various functions, including attention, self-processing, semantic information processing, emotion regulation, and mentalizing. Since these functions are required in music performance, it is likely that the AG plays a role in music performance. Considering that these functions emerge as network properties, this study analyzed the functional connectivity of the AG during the imagined music performance task and the resting condition. Our hypothesis was that the functional connectivity of the AG is modulated by imagined music performance. In the resting condition, the AG had connections with the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and precuneus as well as the superior and inferior frontal gyri and with the temporal cortex. Compared with the resting condition, imagined music performance increased the functional connectivity of the AG with the superior frontal gyrus (SFG), mPFC, precuneus, PCC, hippocampal/parahippocampal gyrus (H/PHG), and amygdala. The anterior cingulate cortex (ACC) and superior temporal gyrus (STG) were newly engaged or added to the AG network during the task. In contrast, the supplementary motor area (SMA), sensorimotor areas, and occipital regions, which were anti-correlated with the AG in the resting condition, were disengaged during the task. These results lead to the conclusion that the functional connectivity of the AG is modulated by imagined music performance, which suggests that the AG plays a role in imagined music performance.

PMID: 30936827 [PubMed]

Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI.

Wed, 04/03/2019 - 20:43
Related Articles

Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI.

Front Neurosci. 2019;13:204

Authors: Chen Z, Fu Z, Calhoun V

Abstract
Conventionally, brain function is inferred from the magnitude data of the complex-valued fMRI output. Since the fMRI phase image (unwrapped) provides a representation of brain internal magnetic fieldmap (by a constant scale difference), it can also be used to study brain function while providing a more direct representation of the brain's magnetic state. In this study, we collected a cohort of resting-state fMRI magnitude and phase data pairs from 600 subjects (age from 10 to 76, 346 males), decomposed the phase data by group independent component analysis (pICA), calculated the functional network connectivity (pFNC). In comparison with the magnitude-based brain function analysis (mICA and mFNC), we find that the pFNC matrix contains fewer significant functional connections (with p-value thresholding) than the mFNC matrix, which are sparsely distributed across the whole brain with near/far interconnections and positive/negative correlations in rough balance. We also find a few of brain rest sub-networks within the phase data, primarily in subcortical, cerebellar, and visual regions. Overall, our findings offer new insights into brain function connectivity in the context of a focus on the brain's internal magnetic state.

PMID: 30936819 [PubMed]

Modulations in resting state networks of subcortical structures linked to creativity.

Wed, 04/03/2019 - 20:43
Related Articles

Modulations in resting state networks of subcortical structures linked to creativity.

Neuroimage. 2019 Mar 29;:

Authors: Schuler AL, Tik M, Sladky R, Luft CDB, Hoffmann A, Woletz M, Zioga I, Bhattacharya J, Windischberger C

Abstract
Creativity is a sine qua non ability for almost all aspects of everyday life. Although very profound behavioural models were provided by 21st century psychologists, the neural correlates of these personality features associated with creativity are largely unknown. Recent models suggest strong relationships between dopamine release and various creative skills. Herein, we employed functional connectivity analyses of resting-state functional magnetic imaging data in order to shed light on these neural underpinnings of creative aspects. For improved sensitivity, we performed the study at ultra-high magnetic field (7 T). Seed regions were defined based on subcortical (ventral tegmental area/substantia nigra, nucleus caudatus) activation foci of a remote associates task (RAT). In addition, bilateral PCC was used as seed region to examine the default-mode network. Network strength across subjects was regressed against a battery of psychological variables related to creativity. Dopaminergic network variations turned out to be indicative for individual differences in creative traits. In this regard, the caudate network showed stronger connectivity in individuals with higher extraversion measures, while connectivity with the midbrain network was found increased with higher ideational behaviour and emotional stability.

PMID: 30935909 [PubMed - as supplied by publisher]

Evaluating the evidence for biotypes of depression: Methodological replication and extension of.

Wed, 04/03/2019 - 20:43
Related Articles

Evaluating the evidence for biotypes of depression: Methodological replication and extension of.

Neuroimage Clin. 2019 Mar 27;:101796

Authors: Dinga R, Schmaal L, Penninx BWJH, van Tol MJ, Veltman DJ, van Velzen L, Mennes M, van der Wee NJA, Marquand AF

Abstract
BACKGROUND: Psychiatric disorders are highly heterogeneous, defined based on symptoms with little connection to potential underlying biological mechanisms. A possible approach to dissect biological heterogeneity is to look for biologically meaningful subtypes. A recent study Drysdale et al. (2017) showed promising results along this line by simultaneously using resting state fMRI and clinical data and identified four distinct subtypes of depression with different clinical profiles and abnormal resting state fMRI connectivity. These subtypes were predictive of treatment response to transcranial magnetic stimulation therapy.
OBJECTIVE: Here, we attempted to replicate the procedure followed in the Drysdale et al. study and their findings in a different clinical population and a more heterogeneous sample of 187 participants with depression and anxiety. We aimed to answer the following questions: 1) Using the same procedure, can we find a statistically significant and reliable relationship between brain connectivity and clinical symptoms? 2) Is the observed relationship similar to the one found in the original study? 3) Can we identify distinct and reliable subtypes? 4) Do they have similar clinical profiles as the subtypes identified in the original study?
METHODS: We followed the original procedure as closely as possible, including a canonical correlation analysis to find a low dimensional representation of clinically relevant resting state fMRI features, followed by hierarchical clustering to identify subtypes. We extended the original procedure using additional statistical tests, to test the statistical significance of the relationship between resting state fMRI and clinical data, and the existence of distinct subtypes. Furthermore, we examined the stability of the whole procedure using resampling.
RESULTS AND CONCLUSION: As in the original study, we found extremely high canonical correlations between functional connectivity and clinical symptoms, and an optimal three-cluster solution. However, neither canonical correlations nor clusters were statistically significant. On the basis of our extensive evaluations of the analysis methodology used and within the limits of comparison of our sample relative to the sample used in Drysdale et al., we argue that the evidence for the existence of the distinct resting state connectivity-based subtypes of depression should be interpreted with caution.

PMID: 30935858 [PubMed - as supplied by publisher]